Patents
MY PATENTS
A blockchain transaction manager implements a method of managing submission of blockchain transactions to a node in a blockchain network by validating a received blockchain transaction and enqueuing the validated received blockchain transaction in a transaction queue, preparing at least one transaction attribute of the received blockchain transaction and placing the received blockchain transaction in a persistence queue, digitally signing or certifying the received blockchain transaction, attempting to submit the digitally signed or certified blockchain transaction to the node, and polling a blockchain status of the submitted blockchain transaction. Processes are provided for automatically recalculating blockchain transaction processing fees in the blockchain transaction attributes. Processes are also provided for repairing transaction attributes when the blockchain transaction has been rejected and submitting the repaired blockchain transaction to the node. Also, nonces are automatically assigned to received blockchain transactions and reassigned when the associated blockchain transaction has been rejected.
Blockchain-based Consent Management System and Method
A blockchain-based consent management system includes a webserver subsystem configured to receive and handle authorized web user requests for access to and/or transactions corresponding to consent data for a blockchain, the webserver subsystem comprising a blockchain subsystem interface; and a blockchain subsystem defining a channel having at least two organizations, corresponding chaincode and an endorsement policy, each of the at least two organizations having at least one peer, each of the at least one peer maintaining a blockchain copy, the blockchain subsystem comprising an orderer in communication with the blockchain subsystem interface.
Relational Data Management and Organization using DLT
A set of both smart contract and off-chain tools is described that enable the management and organization of data so as to enable storage of that data in a distributed ledger according to relational database principles. A cross-distributed-ledger-platform specification plus reusable core components together create a system that may be implemented on distributed ledger platforms to enable storage and retrieval of data to/from the distributed ledger governed by relational principles. A realization of this system enables addition of system chaincode to Hyperledger® Fabric and uses schemas and data represented as JSON. In use, the user may create, update, and query data from code, a console, or a smart contract where every update is a distributed ledger transaction.
Updateable Smart Contracts
A parent/child model for smart contracts enables the smart contracts to be updateable without compromising the immutability of the underlying data. As a first step, a parent smart contract (Client Contract) is deployed that stores any other contract that may be called using the contract address. Then, whenever a new child smart contract (Service Contract) is deployed, the parent smart contract is updated with the address of the new child smart contract so that the parent smart contract will be able to call the child smart contract. The structure of the child smart contract is known to the parent smart contract. For example, the number of inputs going into the child smart contract and the number of outputs coming out of the child smart contract are known to the parent smart contract before deployment of the parent smart contract, and the transaction data remains accessible without affecting the parent contract.